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A Short History of Markov Chain Monte
Carlo: Subjective Recollections from
Incomplete Data1

Christian Robert and George Casella

This paper is dedicated to the memory of our friend Julian Besag,
a giant in the field of MCMC.

Abstract. We attempt to trace the history and development of Markov chain
Monte Carlo (MCMC) from its early inception in the late 1940s through its
use today. We see how the earlier stages of Monte Carlo (MC, not MCMC)
research have led to the algorithms currently in use. More importantly, we see
how the development of this methodology has not only changed our solutions
to problems, but has changed the way we think about problems.

Key words and phrases: Gibbs sampling, Metropolis–Hasting algorithm,
hierarchical models, Bayesian methods.

1. INTRODUCTION

Markov chain Monte Carlo (MCMC) methods have
been around for almost as long as Monte Carlo tech-
niques, even though their impact on Statistics has not
been truly felt until the very early 1990s, except in
the specialized fields of Spatial Statistics and Image
Analysis, where those methods appeared earlier. The
emergence of Markov based techniques in Physics is
a story that remains untold within this survey (see Lan-
dau and Binder, 2005). Also, we will not enter into
a description of MCMC techniques. A comprehensive
treatment of MCMC techniques, with further refer-
ences, can be found in Robert and Casella (2004).
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(e-mail: xian@ceremade.dauphine.fr). George Casella is
Distinguished Professor, Department of Statistics,
University of Florida, Gainesville, Florida 32611, USA
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1A shorter version of this paper appears as Chapter 1 in Hand-
book of Markov Chain Monte Carlo (2011), edited by Steve
Brooks, Andrew Gelman, Galin Jones and Xiao-Li Meng. Chap-
man & Hall/CRC Handbooks of Modern Statistical Methods, Boca
Raton, Florida.

We will distinguish between the introduction of
Metropolis–Hastings based algorithms and those re-
lated to Gibbs sampling, since they each stem from
radically different origins, even though their mathe-
matical justification via Markov chain theory is the
same. Tracing the development of Monte Carlo meth-
ods, we will also briefly mention what we might call
the “second-generation MCMC revolution.” Starting in
the mid-to-late 1990s, this includes the development of
particle filters, reversible jump and perfect sampling,
and concludes with more current work on population
or sequential Monte Carlo and regeneration and the
computing of “honest” standard errors.

As mentioned above, the realization that Markov
chains could be used in a wide variety of situations
only came (to mainstream statisticians) with Gelfand
and Smith (1990), despite earlier publications in the
statistical literature like Hastings (1970), Geman and
Geman (1984) and Tanner and Wong (1987). Several
reasons can be advanced: lack of computing machinery
(think of the computers of 1970!), or background on
Markov chains, or hesitation to trust in the practicality
of the method. It thus required visionary researchers
like Gelfand and Smith to convince the community,
supported by papers that demonstrated, through a se-
ries of applications, that the method was easy to un-
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derstand, easy to implement and practical (Gelfand
et al., 1990; Gelfand, Smith and Lee, 1992; Smith and
Gelfand, 1992; Wakefield et al., 1994). The rapid emer-
gence of the dedicated BUGS (Bayesian inference Us-
ing Gibbs Sampling) software as early as 1991, when
a paper on BUGS was presented at the Valencia meet-
ing, was another compelling argument for adopting, at
large, MCMC algorithms.2

2. BEFORE THE REVOLUTION

Monte Carlo methods were born in Los Alamos,
New Mexico during World War II, eventually result-
ing in the Metropolis algorithm in the early 1950s.
While Monte Carlo methods were in use by that time,
MCMC was brought closer to statistical practicality by
the work of Hastings in the 1970s.

What can be reasonably seen as the first MCMC al-
gorithm is what we now call the Metropolis algorithm,
published by Metropolis et al. (1953). It emanates from
the same group of scientists who produced the Monte
Carlo method, namely, the research scientists of Los
Alamos, mostly physicists working on mathematical
physics and the atomic bomb.

MCMC algorithms therefore date back to the same
time as the development of regular (MC only) Monte
Carlo methods, which are usually traced to Ulam and
von Neumann in the late 1940s. Stanislaw Ulam asso-
ciates the original idea with an intractable combinato-
rial computation he attempted in 1946 (calculating the
probability of winning at the card game “solitaire”).
This idea was enthusiastically adopted by John von
Neumann for implementation with direct applications
to neutron diffusion, the name “Monte Carlo” being
suggested by Nicholas Metropolis. (Eckhardt, 1987,
describes these early Monte Carlo developments, and
Hitchcock, 2003, gives a brief history of the Metropo-
lis algorithm.)

These occurrences very closely coincide with the ap-
pearance of the very first computer, the ENIAC, which
came to life in February 1946, after three years of
construction. The Monte Carlo method was set up by
von Neumann, who was using it on thermonuclear and
fission problems as early as 1947. At the same time,
that is, 1947, Ulam and von Neumann invented inver-
sion and accept-reject techniques (also recounted in

2Historically speaking, the development of BUGS initiated from
Geman and Geman (1984) and Pearl (1987), in accord with the de-
velopments in the artificial intelligence community, and it predates
Gelfand and Smith (1990).

Eckhardt, 1987) to simulate from nonuniform distrib-
utions. Without computers, a rudimentary version in-
vented by Fermi in the 1930s did not get any recog-
nition (Metropolis, 1987). Note also that, as early as
1949, a symposium on Monte Carlo was supported
by Rand, NBS and the Oak Ridge laboratory and that
Metropolis and Ulam (1949) published the very first
paper about the Monte Carlo method.

2.1 The Metropolis et al. (1953) Paper

The first MCMC algorithm is associated with a sec-
ond computer, called MANIAC, built3 in Los Alamos
under the direction of Metropolis in early 1952. Both
a physicist and a mathematician, Nicolas Metropolis,
who died in Los Alamos in 1999, came to this place in
April 1943. The other members of the team also came
to Los Alamos during those years, including the con-
troversial Teller. As early as 1942, he became obsessed
with the hydrogen (H) bomb, which he eventually man-
aged to design with Stanislaw Ulam, using the better
computer facilities in the early 1950s.

Published in June 1953 in the Journal of Chemical
Physics, the primary focus of Metropolis et al. (1953)
is the computation of integrals of the form

I =
∫

F(θ) exp{−E(θ)/kT }dθ

/∫
exp{−E(θ)/kT }dθ,

on R
2N , θ denoting a set of N particles on R

2, with the
energy E being defined as

E(θ) = 1

2

N∑
i=1

N∑
j=1
j �=i

V (dij ),

where V is a potential function and dij the Euclidean
distance between particles i and j in θ . The Boltzmann
distribution exp{−E(θ)/kT } is parameterized by the
temperature T , k being the Boltzmann constant, with
a normalization factor

Z(T ) =
∫

exp{−E(θ)/kT }dθ,

that is not available in closed form, except in trivial
cases. Since θ is a 2N -dimensional vector, numerical
integration is impossible. Given the large dimension
of the problem, even standard Monte Carlo techniques
fail to correctly approximate I, since exp{−E(θ)/kT }

3MANIAC stands for Mathematical Analyzer, Numerical Inte-
grator and Computer.
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is very small for most realizations of the random con-
figurations of the particle system (uniformly in the 2N

square). In order to improve the efficiency of the Monte
Carlo method, Metropolis et al. (1953) propose a ran-
dom walk modification of the N particles. That is, for
each particle i (1 ≤ i ≤ N), values

x′
i = xi + σξ1i and y′

i = yi + σξ2i

are proposed, where both ξ1i and ξ2i are uniform
U (−1,1). The energy difference �E between the new
configuration and the previous one is then computed
and the new configuration is accepted with probability

min{1, exp(−�E/kT )},(1)

and otherwise the previous configuration is replicated,
in the sense that its counter is increased by one in the
final average of the F(θt )’s over the τ moves of the
random walk, 1 ≤ t ≤ τ . Note that Metropolis et al.
(1953) move one particle at a time, rather than moving
all of them together, which makes the initial algorithm
appear as a primitive kind of Gibbs sampler!

The authors of Metropolis et al. (1953) demon-
strate the validity of the algorithm by first establish-
ing irreducibility, which they call ergodicity, and sec-
ond proving ergodicity, that is, convergence to the
stationary distribution. The second part is obtained
via a discretization of the space: They first note
that the proposal move is reversible, then establish
that exp{−E/kT } is invariant. The result is therefore
proven in its full generality, minus the discretization.
The number of iterations of the Metropolis algorithm
used in the paper seems to be limited: 16 steps for burn-
in and 48 to 64 subsequent iterations, which required
four to five hours on the Los Alamos computer.

An interesting variation is the Simulated Annealing
algorithm, developed by Kirkpatrick, Gelatt and Vecchi
(1983), who connected optimization with annealing,
the cooling of a metal. Their variation is to allow the
temperature T in (1) to change as the algorithm runs,
according to a “cooling schedule,” and the Simulated
Annealing algorithm can be shown to find the global
maximum with probability 1, although the analysis is
quite complex due to the fact that, with varying T , the
algorithm is no longer a time-homogeneous Markov
chain.

2.2 The Hastings (1970) Paper

The Metropolis algorithm was later generalized by
Hastings (1970) and his student Peskun (1973, 1981)
as a statistical simulation tool that could overcome the
curse of dimensionality met by regular Monte Carlo

methods, a point already emphasized in Metropolis
et al. (1953).4

In his Biometrika paper,5 Hastings (1970) also de-
fines his methodology for finite and reversible Markov
chains, treating the continuous case by using a dis-
cretization analogy. The generic probability of accep-
tance for a move from state i to state j is

αij = sij

1 + (πi/πj )(qij /qji)
,

where sij = sji , πi denotes the target and qij the pro-
posal. This generic form of probability encompasses
the forms of both Metropolis et al. (1953) and Barker
(1965). At this stage, Hastings mentions that little is
known about the relative merits of those two choices
(even though) Metropolis’s method may be preferable.
He also warns against high rejection rates as indica-
tive of a poor choice of transition matrix, but does not
mention the opposite pitfall of low rejection rates, as-
sociated with a slow exploration of the target.

The examples given in the paper are a Poisson target
with a ±1 random walk proposal, a normal target with
a uniform random walk proposal mixed with its reflec-
tion, that is, a uniform proposal centered at −θt rather
than at the current value θt of the Markov chain, and
then a multivariate target where Hastings introduces
a Gibbs sampling strategy, updating one component at
a time and defining the composed transition as satisfy-
ing the stationary condition because each component
does leave the target invariant. Hastings (1970) actu-
ally refers to Ehrman, Fosdick and Handscomb (1960)
as a preliminary, if specific, instance of this sampler.
More precisely, this is Metropolis-within-Gibbs except
for the name. This first introduction of the Gibbs sam-
pler has thus been completely overlooked, even though
the proof of convergence is completely general, based
on a composition argument as in Tierney (1994), dis-
cussed in Section 4.1. The remainder of the paper deals
with (a) an importance sampling version of MCMC,
(b) general remarks about assessment of the error, and
(c) an application to random orthogonal matrices, with
another example of Gibbs sampling.

Three years later, Peskun (1973) published a com-
parison of Metropolis’ and Barker’s forms of accep-
tance probabilities and shows in a discrete setup that

4In fact, Hastings starts by mentioning a decomposition of the
target distribution into a product of one-dimensional conditional
distributions, but this falls short of an early Gibbs sampler.

5Hastings (1970) is one of the ten Biometrika papers reproduced
in Titterington and Cox (2001).
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the optimal choice is that of Metropolis, where op-
timality is to be understood in terms of the asymp-
totic variance of any empirical average. The proof is
a direct consequence of a result by Kemeny and Snell
(1960) on the asymptotic variance. Peskun also estab-
lishes that this asymptotic variance can improve upon
the i.i.d. case if and only if the eigenvalues of P − A
are all negative, when A is the transition matrix corre-
sponding to i.i.d. simulation and P the transition matrix
corresponding to the Metropolis algorithm, but he con-
cludes that the trace of P − A is always positive.

3. SEEDS OF THE REVOLUTION

A number of earlier pioneers had brought forward
the seeds of Gibbs sampling; in particular, Hammer-
sley and Clifford had produced a constructive argu-
ment in 1970 to recover a joint distribution from its
conditionals, a result later called the Hammersley–
Clifford theorem by Besag (1974, 1986). Besides Hast-
ings (1970) and Geman and Geman (1984), already
mentioned, other papers that contained the seeds of
Gibbs sampling are Besag and Clifford (1989), Bro-
niatowski, Celeux and Diebolt (1984), Qian and Titter-
ington (1990) and Tanner and Wong (1987).

3.1 Besag’s Early Work and the Fundamental
(Missing) Theorem

In the early 1970’s, Hammersley, Clifford and Besag
were working on the specification of joint distributions
from conditional distributions and on necessary and
sufficient conditions for the conditional distributions to
be compatible with a joint distribution. What is now
known as the Hammersley–Clifford theorem states that
a joint distribution for a vector associated with a depen-
dence graph (edge meaning dependence and absence of
edge conditional independence) must be represented as
a product of functions over the cliques of the graphs,
that is, of functions depending only on the components
indexed by the labels in the clique.6

From a historical point of view, Hammersley (1974)
explains why the Hammersley–Clifford theorem was
never published as such, but only through Besag
(1974). The reason is that Clifford and Hammersley
were dissatisfied with the positivity constraint: The
joint density could be recovered from the full condi-
tionals only when the support of the joint was made

6A clique is a maximal subset of the nodes of a graphs such
that every pair of nodes within the clique is connected by an edge
(Cressie, 1993).

of the product of the supports of the full conditionals.
While they strived to make the theorem independent
of any positivity condition, their graduate student pub-
lished a counter-example that put a full stop to their
endeavors (Moussouris, 1974).

While Besag (1974) can certainly be credited to
some extent of the (re-)discovery of the Gibbs sampler,
Besag (1975) expressed doubt about the practicality of
his method, noting that “the technique is unlikely to
be particularly helpful in many other than binary sit-
uations and the Markov chain itself has no practical
interpretation,” clearly understating the importance of
his own work.

A more optimistic sentiment was expressed earlier
by Hammersley and Handscomb (1964) in their text-
book on Monte Carlo methods. There they cover such
topics as “Crude Monte Carlo,” importance sampling,
control variates and “Conditional Monte Carlo,” which
looks surprisingly like a missing-data completion ap-
proach. Of course, they do not cover the Hammersley–
Clifford theorem, but they state in the Preface:

We are convinced nevertheless that Monte
Carlo methods will one day reach an im-
pressive maturity.

Well said!

3.2 EM and Its Simulated Versions as Precursors

Because of its use for missing data problems, the
EM algorithm (Dempster, Laird and Rubin, 1977) has
early connections with Gibbs sampling. For instance,
Broniatowski, Celeux and Diebolt (1984) and Celeux
and Diebolt (1985) had tried to overcome the depen-
dence of EM methods on the starting value by re-
placing the E step with a simulation step, the missing
data z being generated conditionally on the observa-
tion x and on the current value of the parameter θm.
The maximization in the M step is then done on the
simulated complete-data log-likelihood, a predecessor
to the Gibbs step of Diebolt and Robert (1994) for
mixture estimation. Unfortunately, the theoretical con-
vergence results for these methods are limited. Celeux
and Diebolt (1990) have, however, solved the conver-
gence problem of SEM by devising a hybrid version
called SAEM (for Simulated Annealing EM), where
the amount of randomness in the simulations decreases
with the iterations, ending up with an EM algorithm.7

7Other and more well-known connections between EM and
MCMC algorithms can be found in the literature (Liu and Rubin,
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3.3 Gibbs and Beyond

Although somewhat removed from statistical infer-
ence in the classical sense and based on earlier tech-
niques used in Statistical Physics, the landmark paper
by Geman and Geman (1984) brought Gibbs sampling
into the arena of statistical application. This paper is
also responsible for the name Gibbs sampling, because
it implemented this method for the Bayesian study of
Gibbs random fields which, in turn, derive their name
from the physicist Josiah Willard Gibbs (1839–1903).
This original implementation of the Gibbs sampler was
applied to a discrete image processing problem and did
not involve completion. But this was one more spark
that led to the explosion, as it had a clear influence on
Green, Smith, Spiegelhalter and others.

The extent to which Gibbs sampling and Metropolis
algorithms were in use within the image analysis and
point process communities is actually quite large, as il-
lustrated in Ripley (1987) where Section 4.7 is entitled
“Metropolis’ method and random fields” and describes
the implementation and the validation of the Metropo-
lis algorithm in a finite setting with an application to
Markov random fields and the corresponding issue of
bypassing the normalizing constant. Besag, York and
Mollié (1991) is another striking example of the activ-
ity in the spatial statistics community at the end of the
1980s.

4. THE REVOLUTION

The gap of more than 30 years between Metropolis
et al. (1953) and Gelfand and Smith (1990) can still
be partially attributed to the lack of appropriate com-
puting power, as most of the examples now processed
by MCMC algorithms could not have been treated
previously, even though the hundreds of dimensions
processed in Metropolis et al. (1953) were quite formi-
dable. However, by the mid-1980s, the pieces were all
in place.

After Peskun, MCMC in the statistical world was
dormant for about 10 years, and then several papers
appeared that highlighted its usefulness in specific set-
tings like pattern recognition, image analysis or spa-
tial statistics. In particular, Geman and Geman (1984)
influenced Gelfand and Smith (1990) to write a paper
that is the genuine starting point for an intensive use of

1994; Meng and Rubin, 1993; Wei and Tanner, 1990), but the con-
nection with Gibbs sampling is more tenuous in that the simulation
methods are used to approximate quantities in a Monte Carlo fash-
ion.

MCMC methods by the mainstream statistical commu-
nity. It sparked new interest in Bayesian methods, sta-
tistical computing, algorithms and stochastic processes
through the use of computing algorithms such as the
Gibbs sampler and the Metropolis–Hastings algorithm.
(See Casella and George, 1992, for an elementary in-
troduction to the Gibbs sampler.8)

Interestingly, the earlier paper by Tanner and Wong
(1987) had essentially the same ingredients as Gelfand
and Smith (1990), namely, the fact that simulating from
the conditional distributions is sufficient to asymptot-
ically simulate from the joint. This paper was con-
sidered important enough to be a discussion paper in
the Journal of the American Statistical Association,
but its impact was somehow limited, compared with
Gelfand and Smith (1990). There are several reasons
for this; one being that the method seemed to only ap-
ply to missing data problems, this impression being re-
inforced by the name data augmentation, and another
is that the authors were more focused on approximat-
ing the posterior distribution. They suggested a MCMC
approximation to the target π(θ |x) at each iteration of
the sampler, based on

1

m

m∑
k=1

π(θ |x, zt,k),

zt,k ∼ π̂t−1(z|x), k = 1, . . . ,m,

that is, by replicating m times the simulations from the
current approximation π̂t−1(z|x) of the marginal poste-
rior distribution of the missing data. This focus on esti-
mation of the posterior distribution connected the orig-
inal Data Augmentation algorithm to EM, as pointed
out by Dempster in the discussion. Although the dis-
cussion by Carl Morris gets very close to the two-stage
Gibbs sampler for hierarchical models, he is still con-
cerned about doing m iterations, and worries about how
costly that would be. Tanner and Wong mention taking
m = 1 at the end of the paper, referring to this as an
“extreme case.”

In a sense, Tanner and Wong (1987) were still too
close to Rubin’s 1978 multiple imputation to start
a new revolution. Yet another reason for this may be

8On a humorous note, the original Technical Report of this paper
was called Gibbs for Kids, which was changed because a referee did
not appreciate the humor. However, our colleague Dan Gianola, an
Animal Breeder at Wisconsin, liked the title. In using Gibbs sam-
pling in his work, he gave a presentation in 1993 at the 44th An-
nual Meeting of the European Association for Animal Production,
Arhus, Denmark. The title: Gibbs for Pigs.
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that the theoretical background was based on func-
tional analysis rather than Markov chain theory, which
needed, in particular, for the Markov kernel to be uni-
formly bounded and equicontinuous. This may have
discouraged potential users as requiring too much
mathematics.

The authors of this review were fortunate enough
to attend many focused conferences during this time,
where we were able to witness the explosion of Gibbs
sampling. In the summer of 1986 in Bowling Green,
Ohio, Adrian Smith gave a series of ten lectures on hi-
erarchical models. Although there was a lot of comput-
ing mentioned, the Gibbs sampler was not fully devel-
oped yet. In another lecture in June 1989 at a Bayesian
workshop in Sherbrooke, Québec, he revealed for the
first time the generic features of the Gibbs sampler, and
we still remember vividly the shock induced on our-
selves and on the whole audience by the sheer breadth
of the method: This development of Gibbs sampling,
MCMC, and the resulting seminal paper of Gelfand
and Smith (1990) was an epiphany in the world of Sta-
tistics.

DEFINITION (Epiphany n). A spiritual event in
which the essence of a given object of manifestation
appears to the subject, as in a sudden flash of recogni-
tion.

The explosion had begun, and just two years later, at
an MCMC conference at Ohio State University orga-
nized by Alan Gelfand, Prem Goel and Adrian Smith,
there were three full days of talks. The presenters
at the conference read like a Who’s Who of MCMC,
and the level, intensity and impact of that conference,
and the subsequent research, are immeasurable. Many
of the talks were to become influential papers, in-
cluding Albert and Chib (1993), Gelman and Rubin
(1992), Geyer (1992), Gilks (1992), Liu, Wong and
Kong (1994, 1995) and Tierney (1994). The program
of the conference is reproduced in the Appendix.

Approximately one year later, in May of 1992, there
was a meeting of the Royal Statistical Society on “The
Gibbs sampler and other Markov chain Monte Carlo
methods,” where four papers were presented followed
by much discussion. The papers appear in the first vol-
ume of JRSSB in 1993, together with 49(!) pages of
discussion. The excitement is clearly evident in the
writings, even though the theory and implementation
were not always perfectly understood.9

9On another humorous note, Peter Clifford opened the discussion
by noting “. . .we have had the opportunity to hear a large amount

Looking at these meetings, we can see the paths that
Gibbs sampling would lead us down. In the next two
sections we will summarize some of the advances from
the early to mid 1990s.

4.1 Advances in MCMC Theory

Perhaps the most influential MCMC theory paper of
the 1990s is Tierney (1994), who carefully laid out
all of the assumptions needed to analyze the Markov
chains and then developed their properties, in par-
ticular, convergence of ergodic averages and central
limit theorems. In one of the discussions of that pa-
per, Chan and Geyer (1994) were able to relax a con-
dition on Tierney’s Central Limit Theorem, and this
new condition plays an important role in research to-
day (see Section 5.4). A pair of very influential, and
innovative, papers is the work of Liu, Wong and Kong
(1994, 1995), who very carefully analyzed the covari-
ance structure of Gibbs sampling, and were able to for-
mally establish the validity of Rao–Blackwellization in
Gibbs sampling. Gelfand and Smith (1990) had used
Rao–Blackwellization, but it was not justified at that
time, as the original theorem was only applicable to
i.i.d. sampling, which is not the case in MCMC. An-
other significant entry is Rosenthal (1995), who ob-
tained one of the earliest results on exact rates of con-
vergence.

Another paper must be singled out, namely, Men-
gersen and Tweedie (1996), for setting the tone for
the study of the speed of convergence of MCMC al-
gorithms to the target distribution. Subsequent works
in this area by Richard Tweedie, Gareth Roberts, Jeff
Rosenthal and co-authors are too numerous to be men-
tioned here, even though the paper by Roberts, Gel-
man and Gilks (1997) must be cited for setting ex-
plicit targets on the acceptance rate of the random walk
Metropolis–Hastings algorithm, as well as Roberts and
Rosenthal (1999) for getting an upper bound on the
number of iterations (523) needed to approximate the
target up to 1% by a slice sampler. The untimely death
of Richard Tweedie in 2001, alas, had a major impact
on the book about MCMC convergence he was con-
templating with Gareth Roberts.

about an important new area in statistics. It may well be remem-
bered as the ‘afternoon of the 11 Bayesians.’ Bayesianism has ob-
viously come a long way. It used to be that you could tell a Bayesian
by his tendency to hold meetings in isolated parts of Spain and his
obsession with coherence, self-interrogation and other manifesta-
tions of paranoia. Things have changed, and there may be a general
lesson here for statistics. Isolation is counter-productive.”
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One pitfall arising from the widespread use of Gibbs
sampling was the tendency to specify models only
through their conditional distributions, almost always
without referring to the positivity conditions in Sec-
tion 3. Unfortunately, it is possible to specify a per-
fectly legitimate-looking set of conditionals that do not
correspond to any joint distribution, and the result-
ing Gibbs chain cannot converge. Hobert and Casella
(1996) were able to document the conditions needed
for a convergent Gibbs chain, and alerted the Gibbs
community to this problem, which only arises when
improper priors are used, but this is a frequent occur-
rence.

Much other work followed, and continues to grow
today. Geyer and Thompson (1995) describe how to
put a “ladder” of chains together to have both “hot”
and “cold” exploration, followed by Neal’s 1996 in-
troduction of tempering; Athreya, Doss and Sethura-
man (1996) gave more easily verifiable conditions for
convergence; Meng and van Dyk (1999) and Liu and
Wu (1999) developed the theory of parameter expan-
sion in the Data Augmentation algorithm, leading to
construction of chains with faster convergence, and to
the work of Hobert and Marchev (2008), who give pre-
cise constructions and theorems to show how parame-
ter expansion can uniformly improve over the original
chain.

4.2 Advances in MCMC Applications

The real reason for the explosion of MCMC meth-
ods was the fact that an enormous number of problems
that were deemed to be computational nightmares now
cracked open like eggs. As an example, consider this
very simple random effects model from Gelfand and
Smith (1990). Observe

Yij = θi + εij , i = 1, . . . ,K, j = 1, . . . , J,(2)

where

θi ∼ N(μ,σ 2
θ ),

εij ∼ N(0, σ 2
ε ), independent of θi.

Estimation of the variance components can be difficult
for a frequentist (REML is typically preferred), but it
indeed was a nightmare for a Bayesian, as the inte-
grals were intractable. However, with the usual priors
on μ,σ 2

θ and σ 2
ε , the full conditionals are trivial to sam-

ple from and the problem is easily solved via Gibbs
sampling. Moreover, we can increase the number of
variance components and the Gibbs solution remains
easy to implement.

During the early 1990s, researchers found that Gibbs,
or Metropolis–Hastings, algorithms would be able to
give solutions to almost any problem that they looked
at, and there was a veritable flood of papers apply-
ing MCMC to previously intractable models, and get-
ting good answers. For example, building on (2), it
was quickly realized that Gibbs sampling was an easy
route to getting estimates in the linear mixed models
(Wang, Rutledge and Gianola, 1993, 1994), and even
generalized linear mixed models (Zeger and Karim,
1991). Building on the experience gained with the
EM algorithm, similar arguments made it possible
to analyze probit models using a latent variable ap-
proach in a linear mixed model (Albert and Chib,
1993), and in mixture models with Gibbs sampling
(Diebolt and Robert, 1994). It progressively dawned
on the community that latent variables could be arti-
ficially introduced to run the Gibbs sampler in about
every situation, as eventually published in Damien,
Wakefield and Walker (1999), the main example be-
ing the slice sampler (Neal, 2003). A very incomplete
list of some other applications include changepoint
analysis (Carlin, Gelfand and Smith, 1992; Stephens,
1994), Genomics (Churchill, 1995; Lawrence et al.,
1993; Stephens and Smith, 1993), capture–recapture
(Dupuis, 1995; George and Robert, 1992), variable se-
lection in regression (George and McCulloch, 1993),
spatial statistics (Raftery and Banfield, 1991), and lon-
gitudinal studies (Lange, Carlin and Gelfand, 1992).

Many of these applications were advanced though
other developments such as the Adaptive Rejection
Sampling of Gilks (1992); Gilks, Best and Tan (1995),
and the simulated tempering approaches of Geyer and
Thompson (1995) or Neal (1996).

5. AFTER THE REVOLUTION

After the revolution comes the “second” revolution,
but now we have a more mature field. The revolution
has slowed, and the problems are being solved in, per-
haps, deeper and more sophisticated ways, even though
Gibbs sampling also offers to the amateur the possibil-
ity to handle Bayesian analysis in complex models at
little cost, as exhibited by the widespread use of BUGS,
which mostly focuses10 on this approach. But, as be-
fore, the methodology continues to expand the set of
problems for which statisticians can provide meaning-
ful solutions, and thus continues to further the impact
of Statistics.

10BUGS now uses both Gibbs sampling and Metropolis–Hastings
algorithms.
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5.1 A Brief Glimpse at Particle Systems

The realization of the possibilities of iterating im-
portance sampling is not new: in fact, it is about as old
as Monte Carlo methods themselves. It can be found
in the molecular simulation literature of the 50s, as
in Hammersley and Morton (1954), Rosenbluth and
Rosenbluth (1955) and Marshall (1965). Hammersley
and colleagues proposed such a method to simulate
a self-avoiding random walk (see Madras and Slade,
1993) on a grid, due to huge inefficiencies in regu-
lar importance sampling and rejection techniques. Al-
though this early implementation occurred in parti-
cle physics, the use of the term “particle” only dates
back to Kitagawa (1996), while Carpenter, Clifford and
Fernhead (1997) coined the term “particle filter.” In
signal processing, early occurrences of a particle filter
can be traced back to Handschin and Mayne (1969).

More in connection with our theme, the landmark
paper of Gordon, Salmond and Smith (1993) intro-
duced the bootstrap filter which, while formally con-
nected with importance sampling, involves past simu-
lations and possible MCMC steps (Gilks and Berzuini,
2001). As described in the volume edited by Doucet, de
Freitas and Gordon (2001), particle filters are simula-
tion methods adapted to sequential settings where data
are collected progressively in time, as in radar detec-
tion, telecommunication correction or financial volatil-
ity estimation. Taking advantage of state-space rep-
resentations of those dynamic models, particle filter
methods produce Monte Carlo approximations to the
posterior distributions by propagating simulated sam-
ples whose weights are actualized against the incom-
ing observations. Since the importance weights have
a tendency to degenerate, that is, all weights but one
are close to zero, additional MCMC steps can be in-
troduced at times to recover the variety and repre-
sentativeness of the sample. Modern connections with
MCMC in the construction of the proposal kernel are to
be found, for instance, in Doucet, Godsill and Andrieu
(2000) and in Del Moral, Doucet and Jasra (2006). At
the same time, sequential imputation was developed
in Kong, Liu and Wong (1994), while Liu and Chen
(1995) first formally pointed out the importance of re-
sampling in sequential Monte Carlo, a term coined by
them.

The recent literature on the topic more closely
bridges the gap between sequential Monte Carlo and
MCMC methods by making adaptive MCMC a possi-
bility (see, e.g., Andrieu et al., 2004, or Roberts and
Rosenthal, 2007).

5.2 Perfect Sampling

Introduced in the seminal paper of Propp and Wil-
son (1996), perfect sampling, namely, the ability to use
MCMC methods to produce an exact (or perfect) sim-
ulation from the target, maintains a unique place in the
history of MCMC methods. Although this exciting dis-
covery led to an outburst of papers, in particular, in the
large body of work of Møller and coauthors, includ-
ing the book by Møller and Waagepetersen (2003), as
well as many reviews and introductory materials, like
Casella, Lavine and Robert (2001), Fismen (1998) and
Dimakos (2001), the excitement quickly dried out. The
major reason for this ephemeral lifespan is that the con-
struction of perfect samplers is most often close to im-
possible or impractical, despite some advances in the
implementation (Fill, 1998a, 1998b).

There is, however, ongoing activity in the area of
point processes and stochastic geometry, much from
the work of Møller and Kendall. In particular, Kendall
and Møller (2000) developed an alternative to the Cou-
pling From The Past (CFPT) algorithm of Propp and
Wilson (1996), called horizontal CFTP, which mainly
applies to point processes and is based on continu-
ous time birth-and-death processes. See also Fernán-
dez, Ferrari and Garcia (1999) for another horizontal
CFTP algorithm for point processes. Berthelsen and
Møller (2003) exhibited a use of these algorithms for
nonparametric Bayesian inference on point processes.

5.3 Reversible Jump and Variable Dimensions

From many viewpoints, the invention of the re-
versible jump algorithm in Green (1995) can be seen
as the start of the second MCMC revolution: the for-
malization of a Markov chain that moves across mod-
els and parameter spaces allowed for the Bayesian
processing of a wide variety of new models and con-
tributed to the success of Bayesian model choice and
subsequently to its adoption in other fields. There exist
earlier alternative Monte Carlo solutions like Gelfand
and Dey (1994) and Carlin and Chib (1995), the later
being very close in spirit to reversible jump MCMC
(as shown by the completion scheme of Brooks, Giu-
dici and Roberts, 2003), but the definition of a proper
balance condition on cross-model Markov kernels in
Green (1995) gives a generic setup for exploring vari-
able dimension spaces, even when the number of mod-
els under comparison is infinite. The impact of this
new idea was clearly perceived when looking at the
First European Conference on Highly Structured Sto-
chastic Systems that took place in Rebild, Denmark,
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the next year, organized by Stephen Lauritzen and Jes-
per Møller: a large majority of the talks were aimed
at direct implementations of RJMCMC to various in-
ference problems. The application of RJMCMC to
mixture order estimation in the discussion paper of
Richardson and Green (1997) ensured further dissemi-
nation of the technique. Continuing to develop RJM-
CMCt, Stephens (2000) proposed a continuous time
version of RJMCMC, based on earlier ideas of Geyer
and Møller (1994), but with similar properties (Cappé,
Robert and Rydén, 2003), while Brooks, Giudici and
Roberts (2003) made proposals for increasing the ef-
ficiency of the moves. In retrospect, while reversible
jump is somehow unavoidable in the processing of very
large numbers of models under comparison, as, for in-
stance, in variable selection (Marin and Robert, 2007),
the implementation of a complex algorithm like RJM-
CMC for the comparison of a few models is somewhat
of an overkill since there may exist alternative solu-
tions based on model specific MCMC chains, for ex-
ample (Chen, Shao and Ibrahim, 2000).

5.4 Regeneration and the CLT

While the Central Limit Theorem (CLT) is a central
tool in Monte Carlo convergence assessment, its use in
MCMC setups took longer to emerge, despite early sig-
nals by Geyer (1992), and it is only recently that suf-
ficiently clear conditions emerged. We recall that the
Ergodic Theorem (see, e.g., Robert and Casella, 2004,
Theorem 6.63) states that, if (θt )t is a Markov chain
with stationary distribution π , and h(·) is a function
with finite variance, then under fairly mild conditions,

lim
n→∞ h̄n =

∫
h(θ)π(θ) dθ = Eπh(θ),(3)

almost everywhere, where h̄n = (1/n)
∑n

i=1 h(θi). For
the CLT to be used to monitor this convergence,

√
n(h̄n − Eπh(θ))√

Varh(θ)
→ N(0,1),(4)

there are two roadblocks. First, convergence to normal-
ity is strongly affected by the lack of independence. To
get CLTs for Markov chains, we can use a result of
Kipnis and Varadhan (1986), which requires the chain
to be reversible, as is the case for holds for Metropolis–
Hastings chains, or we must delve into mixing condi-
tions (Billingsley, 1995, Section 27), which are typ-
ically not easy to verify. However, Chan and Geyer
(1994) showed how the condition of geometric er-
godicity could be used to establish CLTs for Markov
chains. But getting the convergence is only half of the

problem. In order to use (4), we must be able to con-
sistently estimate the variance, which turns out to be
another difficult endeavor. The “naïve” estimate of the
usual standard error is not consistent in the dependent
case and the most promising paths for consistent vari-
ance estimates seems to be through regeneration and
batch means.

The theory of regeneration uses the concept of
a split chain (Athreya and Ney, 1978), and allows us
to independently restart the chain while preserving
the stationary distribution. These independent “tours”
then allow the calculation of consistent variance esti-
mates and honest monitoring of convergence through
(4). Early work on applying regeneration to MCMC
chains was done by Mykland, Tierney and Yu (1995)
and Robert (1995), who showed how to construct the
chains and use them for variance calculations and di-
agnostics (see also Guihenneuc-Jouyaux and Robert,
1998), as well as deriving adaptive MCMC algorithms
(Gilks, Roberts and Sahu, 1998). Rosenthal (1995)
also showed how to construct and use regenerative
chains, and much of this work is reviewed in Jones
and Hobert (2001). The most interesting and practi-
cal developments, however, are in Hobert et al. (2002)
and Jones et al. (2006), where consistent estimators are
constructed for Varh(X), allowing valid monitoring
of convergence in chains that satisfy the CLT. Inter-
estingly, although Hobert et al. (2002) use regenera-
tion, Jones et al. (2006) get their consistent estimators
thorough another technique, that of cumulative batch
means.

6. CONCLUSION

The impact of Gibbs sampling and MCMC was to
change our entire method of thinking and attacking
problems, representing a paradigm shift (Kuhn, 1996).
Now, the collection of real problems that we could
solve grew almost without bound. Markov chain Monte
Carlo changed our emphasis from “closed form” so-
lutions to algorithms, expanded our impact to solving
“real” applied problems and to improving numerical al-
gorithms using statistical ideas, and led us into a world
where “exact” now means “simulated.”

This has truly been a quantum leap in the evolution
of the field of statistics, and the evidence is that there
are no signs of slowing down. Although the “explo-
sion” is over, the current work is going deeper into the-
ory and applications, and continues to expand our hori-
zons and influence by increasing our ability to solve
even bigger and more important problems. The size
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of the data sets, and of the models, for example, in
genomics or climatology, is something that could not
have been conceived 60 years ago, when Ulam and von
Neumann invented the Monte Carlo method. Now we
continue to plod on, and hope that the advances that
we make here will, in some way, help our colleagues
60 years in the future solve the problems that we can-
not yet conceive.

APPENDIX: WORKSHOP ON
BAYESIAN COMPUTATION

This section contains the program of the Workshop
on Bayesian Computation via Stochastic Simulation,
held at Ohio State University, February 15–17, 1991.
The organizers, and their affiliations at the time, were
Alan Gelfand, University of Connecticut, Prem Goel,
Ohio State University, and Adrian Smith, Imperial Col-
lege, London.

• Friday, Feb. 15, 1991.

(a) Theoretical Aspect of Iterative Sampling, Chair:
Adrian Smith.

(1) Martin Tanner, University of Rochester:
EM, MCEM, DA and PMDA.

(2) Nick Polson, Carnegie Mellon University:
On the Convergence of the Gibbs Sampler and
Its Rate.

(3) Wing-Hung Wong, Augustin Kong and
Jun Liu, University of Chicago: Correlation
Structure and Convergence of the Gibbs Sam-
pler and Related Algorithms.

(b) Applications—I, Chair: Prem Goel.

(1) Nick Lange, Brown University, Brad Car-
lin, Carnegie Mellon University and Alan
Gelfand, University of Connecticut: Hierarchi-
cal Bayes Models for Progression of HIV Infec-
tion.

(2) Cliff Litton, Nottingham University, Eng-
land: Archaeological Applications of Gibbs
Sampling.

(3) Jonas Mockus, Lithuanian Academy of
Sciences, Vilnius: Bayesian Approach to Global
and Stochastic Optimization.

• Saturday, Feb. 16, 1991.

(a) Posterior Simulation and Markov Sampling,
Chair: Alan Gelfand.

(1) Luke Tierney, University of Minnesota:
Exploring Posterior Distributions Using Markov
Chains.

(2) Peter Mueller, Purdue University: A Ge-
neric Approach to Posterior Integration and
Bayesian Sampling.

(3) Andrew Gelman, University of Califor-
nia, Berkeley and Donald P. Rubin, Harvard
University: On the Routine Use of Markov
Chains for Simulations.

(4) Jon Wakefield, Imperial College, London:
Parameterization Issues in Gibbs Sampling.

(5) Panickos Palettas, Virginia Polytechnic
Institute: Acceptance–Rejection Method in Pos-
terior Computations.

(b) Applications—II, Chair: Mark Berliner.

(1) David Stephens, Imperial College, Lon-
don: Gene Mapping via Gibbs Sampling.

(2) Constantine Gatsonis, Harvard Univer-
sity: Random Efleeds Model for Ordinal Cate-
qorica! Data with an Application to ROC Analy-
sis.

(3) Arnold Zellner, University of Chicago,
Luc Bauwens and Herman Van Dijk: Bayesian
Specification Analysis and Estimation of Simul-
taneous Equation Models Using Monte Carlo
Methods.

(c) Adaptive Sampling, Chair: Carl Morris.

(1) Mike Evans, University of Toronto and
Carnegie Mellon University: Some Uses of
Adaptive Importance Sampling and Chaining.

(2) Wally Gilks, Medical Research Council,
Cambridge, England: Adaptive Rejection Sam-
pling.

(3) Mike West, Duke University: Mixture
Model Approximations, Sequential Updating
and Dynamic Models.

• Sunday, Feb. 17, 1991.

(a) Generalized Linear and Nonlinear Models,
Chair: Rob Kass.

(1) Ruey Tsay and Robert McCulloch, Uni-
versity of Chicago: Bayesian Analysis of Autore-
gressive Time Series.

(2) Christian Ritter, University of Wisconsin:
Sampling Based Inference in Non Linear Re-
gression.

(3) William DuMouchel, BBN Software, Bos-
ton: Application of the Gibbs Sampler to Vari-
ance Component Modeling.
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(4) James Albert, Bowling Green University
and Sidhartha Chib, Washington University, St.
Louis: Bayesian Regression Analysis of Binary
Data.

(5) Edwin Green and William Strawderman,
Rutgers University: Bayes Estimates for the Lin-
ear Model with Unequal Variances.

(b) Maximum Likelihood and Weighted Bootstrap-
ping, Chair: George Casella.

(1) Adrian Raftery and Michael Newton,
University of Washington: Approximate Bayesian
Inference by the Weighted Bootstrap.

(2) Charles Geyer, Universlty of Chicago:
Monte Carlo Maximum Likelihood via Gibbs
Sampling.

(3) Elizabeth Thompson, University of Wash-
ington: Stochastic Simulation for Complex Ge-
netic Analysis.

(c) Panel Discussion—Future of Bayesian Infer-
ence Using Stochastic Simulation, Chair: Prem
Gael.
• Panel—Jim Berger, Alan Gelfand and Adrian

Smith.
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